Volume 114, number 2 FEBS LETTERS June 1980

THE HYDROLYSIS OF SPHINGOMYELIN BY PHOSPHOLIPASE C FROM BACILLUS CEREUS

Anne-Brit OTNÆSS

Institute for Experimental Medical Research, Ullevål Hospital, Oslo 1, Norway

Received 20 March 1980 Revised version received 10 April 1980

1. Introduction

Phospholipase C from *Bacillus cereus* contains 2 Zn²⁺/molecule [1] and catalyzes the hydrolysis of phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine in artificial [2,3] and biological membranes [4–6] while sphingomyelin was found not to be a substrate for the enzyme.

In the experiments presented here, the enzyme can be inactivated by o-phenanthroline and reactivated by Co²⁺ in such a way that also sphingomyelin micelles become a substrate. Phospholipase C with such altered specificity does not cause lysis of freshly isolated human or bovine erythrocytes.

Such a change of the substrate specificity is of particular interest since phospholipases are widely used tools in membrane studies.

2. Materials and methods

2.1. Phospholipase C from Bacillus cereus

ATCC 10987 AB 1 was purified as in [7], and the enzyme preparation was homogeneous by disc gel electrophoretic analysis [2]. The enzyme (0.3-0.4 mg/ml) was stored in veronal-buffered saline containing 1 mM ZnCl₂. Prior to use, free Zn²⁺ were removed by passing 1 ml enzyme solution through a column $(10 \times 0.6 \text{ cm})$ of Bio-Rad Chelex-100 chelating resin equilibrated with veronal-buffered saline without ZnCl₂. An enzyme aliquot was inactivated by incubating at 4°C for 2 h with an equal volume of 10 mM o-phenanthroline (Sigma, Chemical Co., St Louis, MO). Enzyme without o-phenanthroline was incubated with H₂O under identical conditions.

2.2. Preparation of substrate

Sonicated vesicles were prepared with mannitol-buffer as described elsewhere [2]. Sphingomyelin (bovine brain, Koch-Light, Colnbrook) and phosphatidylcholine (L-dipalmitoyl, Koch-Light) at 1 mg phospholipid/ml were sonicated 12 × 15 s while kept on ice.

2.3. Treatment of phospholipids with phospholipase C Sonicated vesicles (1.5 ml) were incubated with $10 \,\mu l \, 100 \,\text{mM} \, \text{ZnCl}_2$ or CoCl_2 for 5 min at 37°C . The reaction was initiated by the addition of phospholipase C (final conc. $0.2-2.5 \,\mu g$ phospholipase C/ml). The reaction was quenched after $10 \,\text{or} \, 30 \,\text{min}$ by the addition of $50 \,\mu l$ concentrated perchloric acid, and the reaction vessels were left on ice for 2 h or overnight. Following filtration through Millipore filters $(0.22 \,\mu m)$, $500 \,\mu l$ samples were digested [2] and phosphate measured [8]. Values reported are the means of duplicate assays.

2.4. Treatment of erythrocytes with phospholipase C
Human and bovine erythrocytes were washed
3 times with veronal-buffered saline. Aliquots (2 ml)
of 2.5% erythrocyte suspension were mixed with
2-5 µg phospholipase C and 20 µl 100 µM CoCl₂ or
ZnCl₂. The samples were incubated 1 h at 37°C,
alternatively, for 30 min at 23°C, followed by a 10 min
incubation on ice and another incubation (20 min) at
23°C. The cells were removed by centrifugation and
the degree of hemolysis determined [4].

3. Results and discussion

Phospholipase C is a zinc metalloenzyme [1,9,10]

Table 1
Hydrolysis of phospholipid vesicles by phospholipase C (Bacillus cereus)

Pretreatment with o-phenanthroline (5 mM)	Metal ion (0.6 mM)	Phospholipid hydrolyzed ^a (%)	
		Phosphatidylcholine	Sphingomyelin
_	_	54	0
	Zn ²⁺	56	0
_	Co ²⁺	42	0
+	_	11	0
+	Zn ²⁺	56	0
+	Co ²⁺	48	16

^a Incubation (30 min at 37°C) of phosphatidylcholine or sphingomyelin vesicles with phospholipase C (2.5 μg/ml final conc.)

and may be inactivated by o-phenanthroline. The inactivation is reversed by the addition of $\mathbb{Z}n^{2+}$ or $\mathbb{C}o^{2+}$ [1].

The activity towards sonicated phosphatidyl-choline vesicles is fully restored by the addition of ZnCl₂ while the reactivation observed with CoCl₂ is somewhat lower (table 1). The addition of CoCl₂ to native enzyme results in a similar decrease in activity towards phosphatidylcholine, suggesting that CoCl₂ may have a slight inhibitory effect under these conditions.

No hydrolysis of sphingomyelin was obtained by native phospholipase C in the absence or presence of metal ions. Following reactivation of o-phenanthroline treated enzyme with $CoCl_2$, the enzyme hydrolyzed sphingomyelin and the rate of hydrolysis was $\sim 30\%$ of the phosphatidylcholine hydrolysis (table 1). No sphingomyelin was hydrolyzed when the enzyme was reactivated by Zn^{2+} . When lower enzyme concentrations were used $(0.2-0.6~\mu g$ phospholipase C/ml), no hydrolysis of sphingomyelin by Co^{2+} was observed, in agreement with [2].

These data indicate that phospholipase C from *Bacillus cereus* may hydrolyze sphingomyelin in sonicated vesicles under certain conditions. The enzyme also may hydrolyze sphingomyelin in aged erythrocytes [11] and erythrocyte ghosts [12]. The sphingomyelin hydrolyzing activity is not likely due to contamination by other phospholipases, since sphingomyelin hydrolysis has been obtained when crystallized phospholipase C was used [11].

When Co²⁺-reactivated o-phenanthroline treated enzyme was added to suspensions of human or bovine erythrocytes, no hemolysis was observed. The change of substrate specificity observed with sphingomyelin vesicles is probably not accompanied by a similar hydrolysis attack on sphingomyelin in fresh erythrocytes, although there might be a limited degradation of phospholipids without hemolysis.

The hydrolysis of sphingomyelin by *B. cereus* phospholipase C under conditions where either the native membrane substrate has been altered [11,12], or the enzyme has been altered by the replacement of Zn²⁺ with another metal ion, opens new possibilities for the regulation of the specificity of phospholipid hydrolysis by phospholipases. Work with phospholipase A₂ (Naja naja naja) has shown that substrate specificity reversal may occur depending on the structure and composition of the substrate [13,14]. Studies of membrane structure based on the action of added phospholipases, should be interpreted with more caution.

Acknowledgement

This work was supported by the Norwegian Research Council for Science and the Humanities.

References

- [1] Little, C. and Otnæss, A.-B. (1975) Biochim. Biophys. Acta 391, 326-333.
- [2] Otnæss, A.-B., Little, C., Sletten, K., Wallin, R., Johnsen, S., Flengsrud, R. and Prydz, H. (1977) Eur. J. Biochem. 79, 459-468.
- [3] Roberts, M. F., Otnæss, A.-B., Kensil, C. A. and Dennis, E. A. (1978) J. Biol. Chem. 253, 1252-1257.
- [4] Zwaal, R. F. A., Roelofson, B., Comfurius, P. and Van Deenen, L. L. M. (1971) Biochim. Biophys. Acta 223, 474-479.

Volume 114, number 2 FEBS LETTERS June 1980

- [5] Op den Kamp, J. A. F., Kauers, M. T. and Van Deenen, L. L. M. (1972) J. Bacteriol. 112, 1090-1098.
- [6] Otnæss, A.-B. and Holm, T. (1976) J. Clin. Invest. 57, 1419–1425.
- [7] Little, C., Aurebekk, B. and Otnæss, A.-B. (1975) FEBS Lett. 52, 175-179.
- [8] Chen, P. S., Toribara, T. Y. and Warner, H. (1956) Anal. Chem. 28, 1756-1758.
- [9] Ottolenghi, A. C. (1965) Biochim. Biophys. Acta 106, 510-518.
- [10] Otnæss, A.-B., Prydz, H., Bjørklid, E. and Berre, A. (1972) Eur. J. Biochem. 27, 238-243.
- [11] Little, C. and Rumsby, M. G. (1980) Biochem. J. in press.
- [12] Otnæss, A.-B. and Adamich, M. (1980) in preparation.
- [13] Adamich, M. and Dennis, E. (1978) Biochem. Biophys. Res. Commun. 80, 424-428.
- [14] Adamich, M. and Dennis, E. (1978) J. Biol. Chem. 253, 5121-5125.